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Certain properties of Jacobi's polynomials (and, in particular, of Hegen- 
bauer, Legendre's and Tchebysheff'a pol~o~als~ were established, and their 
application in contact problems was given in cl]. This paper supplements 
the previous results, namely: the analogous properties are established here 
for the polynomlals of Tchebysneff-Laguerre and Tchebysheff-Hermlte, and 
their application In constructing an approximate solution of the three- 
dimensional contact problem of a semi-infinite plate and the elastic half- 
space is*glven. 

1, Let us note that if a linear operator L is given, such that the 

corresponding integral equation 

has the unique integrable solution of the form 

bdrn’ # bp # 0 (m, k-0, 1, 2,...) 

then a system of polynomials 
m 

P,(S) = x @n) .j, C,(m) = 1 (m = 0, 1, 2...) 
j=O 

which are quite simply related to the elgenfunctions of the operator L can 

be constructed, namely 

L [Pm (4 P (4 = PmP. (4 Pm (4 (m = 0, 1, 2. . *) (1.4) 

and, moreover 
pm = [brrl(m)]-l (1.5) 

The validity of the above statement may be verified in the same way as 
in Cll. Further, we will make use of the result of [2] in which the solution 
of the Integral equation 
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2p 

vzr P/a - pj 
--~ (7) df = f (t) (t>O,IRepI<$) (1.6) 

Is constructed. Eere, KI,,(z) Is the Macdonald's function. 

In particular, It follows from the above paper, that for j(t) = e-at the 
solution q,(f) of J3quatlon (1.6) has the form 

t 
q,(1) =*r (0) (1 + ay $.! + (1 - a) \ < e0 (‘-‘) ds 

I ( 
0 = f- p) (1.7j 

. s 
0 

and, therefore, the solution of the following equation 

cp;, (d 
-dz = e-'tm (t > 0) 
r% - P 

(1.8) 

Is defined by Formula 

Hence, after dlfferentlatlng III times we find 
m 

‘pm (t) = e’-’ 2 b$"') tk, bktm) = 2k-m-p+11' (JA + m - k - l/J m! 

42 r C -V& (m 
(1.9) 

k=o - W r C + k + ‘h) 

Therefore, the elgenvalues p, of the integral operator which Is contained 
In (1.8), in accordance with (1.5) and (1.9), will have the form 

y, = 2+" (m!)-1 r (1/2 + p + m) 

Following the same considerations as In Cl], and bearing In mind the ortho- 

gonallty and normalization conditions [3] for the Tchebysheff-Laguerre poly- 

nomials L a 

above pol~o~%s 

one can obtain, on one hand the Integral property of the 

(t>,O,m=0,1,.2...) (1.11) 

and on the other hand, the expansion which converges In the mean 

K,,(I-Y I) 
1 r-y 1” 

= ViWh-~cL) i 
fPexty m=. 

Lmp-“’ (22) Lnlp-“’ (2y) (1.12) 

For u = 0 the relations (1.11) and (1.12) become 

-+,(I! - ZI) e-fL,-X(2r)+ = & (2m--1)'1 e-fLm-Sh (2t) (1.13) 
2m!! 

” 

f K, (I z - y I) = e-x-v 5 Lm+ (22) Lm+* (2y) 
m==o 

(1.14) 

In view of the well known connection [3] between the Hermite's and Laguer- 
re’s polynomials 
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Hm (F ij = (- I)= 2mhEt Lm-” (t) (5.15) 

the latter MY be replaced by the former in the relations (1.14) and (1.x5), 
if that proves more expedient. 

Moreover, since K, (ix) = - l12rtiH$a) (x), it Is easy to obtain a formal 
transformation of the relation (1.13) intb an anaY.agous one for the second 
Hankel function H,(Z) (2). First a substitution t = yz, 7 = pg @ > o), is made 
in f1.13), and then the obtained result is continued gnalytlcally into the 
first quadrant of the complex domain of p (0 < arg@ (= ‘jznf. ??hus we obtain 
@ = i.?@) 

Let us note that the integral operator contained in (1.13) gives ripe to 
the integral equation of the first kind, to which the problem of pressing a 
semi-infinite punch into the elastic h&W-space 143 is reduced, and the 
integral operator contained in (1.16) plays an analogous role in the Sommer- 
feld’s problem [5] . 

2, Bateman’s well known result (C6], p,171), proved for the integral 
equationa of the second kind, remains valid for the integral equations of 
the first kind fn the following formulation. 

Suppose that for Equation 
b 

f 
k (2, ?/I cp fY) CaY = f i(z) (a < z G bf (2.Q 

a 
In a certain class of functions we find the resolvent y(x, g)# i.e. the 
function by which the solution of Equation (2.1) can be presented in the 
form b 

fp (21 = 1 T (% YI f fY1 dY G-2) 
a 

Then for the Integral equation with the kernel 

k ($3 Y) r: (2) l * * /,* (4 

K*(x, y) =+ g: (Y) a11 . I) . aIn , (2.3) 

g,* ful Q - * * %7t 

where, fr*(r) and I,* are arbitrary functions, and ak,. are arbitrary 
numbers, the resolvent is given in the form 

(2.4) 
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This result, known from the theory of linear operators, Is easily verified 

by direct substitution of function 
b 

‘P,, (4 = 
s 

r, k, Y) f (Y) dy 

Into Equation (2.1) with the kernel 72.3). 

Consider an Integral equation of the first kind with a symmetric kernel 

X(x, v), representable in the form 

K (5, Y) = k (5, Y) - K, (5, Y) 
where k(x, u) and X+(X, I/) are also symmetric kernels. We will assume 

that for the lntegr'al operator generated by the kernel k(x, p), the Inverse 

operator Is known In a certain class of functions, as well as the complete 

system of elgenfunctlons Q,(X), such that (a,, IS the Kronecker's symbol) 

b b 

s k (xv Y) g, M dy = p,,,gm (4, s g, (4 g, (4 dz = bdmn (2.7) 
a a 

For a sufficiently general case we can obtain the expansion 

K, tz, Y) = kgo i. %m gk (d g,,, (?.d (Ok, m = %, k) 

Furthermore, tie introduce the designation 

K, (z, y) = k (2, Y) - uk,711 k?k (d g,,, (Y) (24 

The reSOlVent of the integral equation of the first kind with the kernel 

(2.8) will be designated by I'.(x, v). Assuming T,(x, u) to be known, let 

us construct r*,(x, v), I.e. the resolvent of the Integral equation of the 

first kind with the kernel X,+,(X, y). It Is easy to verify that 

where 

K,, (~9 Y) &,+I (4 sn (4 
K,,+l (x, y) = - gn+lbd o 1 

S,(Y) i - %+1 

Bearing In mind that according to (2.7) 
b 

s 
Kn (3, Y) g,+l (y) dy = I+,+~ g,,+l (4 

a 
and Introducing designations 

W-9 

(2.10) 
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bb 

ak, n+l%n, n+l 
k=O m=o ss r,S f5* ?d gk (‘1 g,,, (9) dx d!, 

aa 

we will have, In accordance with (2.4) 

r,,, (2, Y) = 3 

rn(% Y) G &+1(4 Q,(x) 

ILn;:g,+l (Y) ILrl+1 ?I+1 -'A -1 

Q,(Y) -1 a*+1+Tn - 
where 

A,,* = L+I (a,+~ + Tn) - I‘ n+1 

(2.12) 

After expanding the determinant, Formula (2.12) may be represented In the 

form 

r,,, (4 3) = rTI (2, 3) - 
g,+1(4 6,+1 (Y) 

h+1 n+1 I - + 1 Qn (4 g,+1 (Y) + 

+ g*+l (x) 8, (y) + &a+1 Qn (4 Qn (!I) + G gn+1(4 &I+1 Ml 
Setting 

l-73 (4 Y) = r (5, Y) - ll n gm;,(y) - i $ &$gk(x) g,,,(y) 
??I=0 

m 
m=O k=o 

(2.11) 

(2.13) 

(2.14) 

and utilizing Formulas (2.10) to (2.13), one finds that 

n+l (4 gm (Y) 
n+l W-1 

rn+, (X9 !I) = T (X9 Y) - 2 pmli, - 2 2 A k!%‘) gk tx) grn (?d 
m==o m=o k=o 

where the following formulas will hold true for the coefflcents Ak!*A' 

&(“k+l) = AAn - 5n+~ Bk Bm 
*n h Jc6n) 

(2.15) 

A @+I) _ An!:+fi - 1 (n+l) - 1 
m,n+1- 1 (m d 4, A 

n 
ntl, n+l - AnAntI 

where 

B,(n) = 5 ar,n+lW$?t 
r=o 

An = IL,,+~ - &I+I (&at, - k$o ak, ntl hkBi”‘) 
On the other hand, It can be readily shown that 

r. (5, 9) = Y 
(x, y) _ go (4 go(Y) _ go (4 go (Y) 

pohc ho (aoh - PO) 

Hence 

A,“; = ho-l (aoh - po)-’ (2.16) . 

Thus, knowing Aof' and using thg recurrence formulas (2.l5), we can con- 

struct the resolvent for the Integral equation of the first kind with the 

kernel (2.8). 
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In the case of the integral equation of the second kind 
b 

cp (4 + 1 k (2, Y) cp (~1 dy = f (4, [k (2, Y) = ; fm* (4 irm* (Y)] (2.17) 
a m=o 

which can be written down In the form of an equation of the first kind 

b 

s 
v (z - Y) + k (5. ~11 cp (Y) dy = f (4 [a (4 the Impulse function] 

for tahe coefficients A ,@) k i , which define the resolvent 

71 n 

r, (x1 Y) = 8 (x - Y) - ~ ~ AkI;)fk* (x) gj* (Y) (2.18) 

of the equation 
b 

S[ 6 (I - Y) + i fm: (4 gm* (~11 T+, (Y) dy = f (4 
a m=o 

the recurpence formulas can be established In an analogous manner 

A’“k’lj = A,(;) + An-l ~,(")c~(") 
(k id 4 

(2.19) 

A ("+I) _ 
B,(“) 

k. n+l - b 
n 

(kd4, A,,+$$=& 

where 

i=c 
3 ak,j = s fk* (2) gjs (Y) dy 

a 

b 

n n 

A,=l+a 
ntl+ 2 2 AkiT' an+l, jak n+l , tak,k = ‘k) 

R=o j-0 

Here, It Is easily found that 

A$ = (1 + 00)-l 

3. Let us Indicate some possible ways of applying the above results to 
the construction of approximate solutions of certain Integral equations of 
mathematical physics. 

Suppose It Is required to construct an approximate solution of the integ- 
ral equation n 

~(Z)+~~~O(~x-s,)~(s)ds=f(~) 
. 

(0 Gfx < a) (3.1) 

0 
Retaining the (n+l)th term In Expansion (1.14), we obtain the following 

approximate representation for the kernel of the Integral equation 

K, (I x - s I) ~ne-“-~ i Lm-‘/’ (22) Lm-“l (2s) (x, s >, 0) 
m=o 

by means of which we reduce (3.1) to the integral equation of (2.17) type. 
Therefore, If the solution of Equation 3.1) with the kernel defined by the 
above formula Is designated b 
solution), then according to y2.18! 

rp r) ( n+ 1)th approximation of the exact 
we !lII have 
. 

a 

(P,, (4 = f (4 - 1 r,,* (2, Y) f (Y) dy (3.2) 

n 
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where 

O.k. Dopov 

r,* (2, Y) = 5 $ A,(Y) L,+’ (2x) Lj+ (Zy) e-X-” 
k=O j=o ’ 

For the coefficients A,$) 
which by virtue of 

the recurrence formulas (2.2) are valid, In 

one should set 

fk* (x) = gk* (z) = Jf/e-xLk-'I'(2x) 

a 

Cj@) zzz Bj tn), A,(;) z.z A .(@ 
3,k’ 

a 
k, i = 3, s e-2XLk -% (22) Lj-“’ (2~) dx (3.3) 

0 

The last Integral can be presented In the form 

ak, j = h [akz - e +Pki (2a) 1 (3.4) 

The numbers ull:, and the Polynomial p,(b) are defined by Formulas 

7 ak,7 = ‘i; 
s 

e-‘Lk-‘/’ (t) Lj-% (t) dt = 

Ii 

(- 1)k (2j - i)!! j 
2j+k+l kl x (j - :; ;;r”_+k)2; I]!! 

r=o 
(3.5) 

cm kij 

pkj (b) = 4 * e-‘Lk-‘~~ (t) Ljc’jz (t) dt = 2 CAL,-” (b) 
\ 

(3.6) 

i, ??I=0 

where 

2c = j?k - l)!l (2j - I)!! (- iy+*tm(2r + 2s + l)! 
,II (am + 1)/j 2fi+i-m r=Os=maX(O, m_r) (241 (24 (r + s - 4 !(k - 4 (i - 41 

In order to verify the second equality In Formula (3.5) one should-replace 
$:k(;)s by Its expression ln terms of welght function and Intergate by parts 

. For the proof of the second equality In (3.6) pr , (b) should be 
expanded Into a series of Laguerre’s polynomials. 

Formula (3.4) and, therefore, the formula for the approxlmate solution of 
the Integral equation (3.2) are slmpilfied considerably for Q = 0 , since ln 
that case ak j = Aaky. 

Qrlnberg &d Fok [7] have shown that the problem of coastal refraction 
of electromagnetic waves can be reduced to the Integral equation (3.1) for 
a-0. The authors have obtained the exact solution of the above integral 
equation in the form of a rather complex double quadrature; consequently, 
they proQos@ an approximate solution valid only If the wave incidence angle 
is not too oblique. The approximate solution proposed In this paper does 
not contain any quadrature3 and may be used, generally Speaking, for any 
parameters of Fiquatlon (3.1). 

4. Let us apply the results obtained In the first two sections to the 

construction of an approximate solution of the contact problem of a seml- 

Infinite plate with the elastic half-space. It has been shown ln [8] that 

If a semi-infinite plate with the flexural rigidity D Is acted upon by a 

unit force at point Y = 0 , CC = b , then the Fourier transform p,(s) of 

the contact stress [g] must satisfy the integral SqUatiOn 
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3 {;K~ (a 1 x - E I) + $ G [a (5 - 5))) Pi (8 dt = fk (x) (2, h>O) (4.1) 
0 

where 

fA (x) = 2 (A, + A,hx) e-hn + -&G [A (x - b)l 

Here, A0 and A, are arbitrary conetante, V, , E, are the Polsaon’8 

ratio and modulue of elasticity of the half space. 

After 

tlone may 
p,(x) 1s found, the Fourier transform ~~(a.-) of the plate deflec- 

be determlned from one of the Formulas [8 and 91 
co 

. I9 = 2 (1 - vq D 
--a, 

n 
El (4.3) 

wh(x)=~SKo(hIx--l)ph(5)dS (el=‘2(1;ly13) (4.4) 
0 

Dm(s) =(Ao+A,h~)e-Ar+ ~[G[h(r--6)1--$G[h.(s-_S)IPI(S)dS] (z~?;{ 

6 

The arbitrary COnBtaxW8 A, and A, should be found from the free edge 
conditions for the plate C8 and 91 

w*(2) (+ 0) - h2VWA (+ 0) = 0, WA(S) (+ 0) - A2 (2 - v) w(‘) (+ 0) 

Multlplylng 

tlon 

hx = t, 

we obtain 

both eldee of Equation (4.1) by fi and making a 

at = z, ; P* (;) = P (a ($)“a (+) = fr 

= 0 (4.6) 

substltu- 

(0 (4.V 

@+o (I t - r 1) + ($)‘“$ G (t - f)]p (T) dz = f* (t) 
i 

(4.8) 

The resulting expansions are 

G (t - 7) = e++‘) i 5 b,,L,-‘is (2t) L,-‘:s (2%). 
k=O m=o 

(4.9) 

In view of the orthogonallty of the Laguerre’a polynomials, we can write 
down that 

CQ 
b km k! m! -= 

2 r (% + IE) I’ (‘I, + m) 
L,+ (2t) r, (t) e-’ dt 

Vi 
(4.10) 

where 
m 

I, (t) = \ G (t - z) L,+(PZ) e-’ dt 
V-/‘F 

(4.11) 

By virtue of the convolution theorem for Fourier transforms and taking 
Into account (4.3), the last Integral may be put into the form’ 
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(4.12) 

where 

am (2~) = S L,-‘l~ (2~) e-r(l-iu) d-t _ (--lJm E\rn + 1/2) (1 + i~)~ 
Ifi 

(4.13) 
0 (1 _ iq+‘it 

In evaluating the lnte ral 
was used. Substituting ( & 

contained In (4.13) Formula 7.414 (8) from [33 
.12) into (4.10), after the Interchange of integ- 

rals and application of Formula (4.13), we obtain 

(-l)k+mdu 
(4.14) 

12 1 1 
k-m+% (1 _ iu)m-k+% =x 9 - 4 (k - m)2 1 - 4 (k - mj2 

The last equality was established with the aid of Formula 8381 (1) from 
c31, and the well known properties of Euler's gamma-function. 

If both sides of Equation (4.8) are multiplied by t-" , and If we set 

k (4 .t) = ;(f)‘” (tz)-“‘K, (I t - z I), g, (t) = [$)‘” e-tL,-‘l’ (2t) (4.15) 

P b (0, f (41 = cp (0, f* (0; a,#, = - (J3ak_m, 03 =c3!5 
I,3 n 

4 
a, = (1 - 4n2)(9- 4n2) (4.16) 

then, In view of (4.9), we obtain 

00 

k (4 ~1 - it ii! ak,m gk @) g, b)] q (‘) a’ = f @) (4.17) 
k=o rn=o 

where, due to (1.13) and (4.15), the relations (2.7) will be valid (for a-0, 

b-m ), and the following relation as well 

p m = h, = (2m!!)-’ (2m - I)!! (Po = h3 = 1) (4.18) 

Using Formulas (4.2), (4.7), (4.9), (4.14) and (4.16) the right-hand side 

of the Integral equation (4.17) can be written down In the form 

f tt) = b*gO tt) - ‘$%, @) + O3 k$o gk @) 2, ak-mt?,,, (p) P”4 (4.19) 

where 

p = hb, A,* = (2/n)%+(A,, +‘/,A,), A,* = ‘/,c3 (2/n)*“A, (4.20) 

According to the theory given In Section 2, the solution of the Integral 

equation (4.17) for the case when (n+l)th term of the infinite sum contained 

in It Is retained, will be determined by Formula 

co 

q,(t) = 5 rn (4 @ f (4 dr 
0 



or, after (2.14) Is substituted ln the above and ln view of (4.19) 

(4.21) 
‘p, (0 = -A,* i; Ak,b”‘g, (0 + ;A,* i A,,‘:‘g, (t) - 03 i O/p) (P) gk (t) 

k=o k=o k=o 
where 

mkcn) (P) = i i: %r&w~k,(~g,. (p) +-p 
m=o r=o 

(4.22) 

Therefore, due to (4.151, (4.16) and (4.7), the Fourier transform p,n(~) 

the contact stress In the (n+l)th approximation Is determined 

phn (z) = - ($)“4 (+)%+ IA‘,* ~o&.(;k;-lh (2hx) - 

11 n 

by F&nula of 

by 

- +I* 2 &,(;'&"'(2hx) + a3 2 Ok@) (ii@&-" (2hz)} (3: > 0) (4.23) 
k=o k=@ 

It remains now to find the values of the arbitrary constants Ac+ and A,* 

satisfying ,the free edge conditions (4.6). 

The substitution of (4.23) into (4.4) with the use of relation (1.13) 

gives 

- +A,* i &,(;)h&k-lh (ah) + Cf3 i &(") (hb)h&-'/" (2~~))I (x >, 0) (4.24) 
k=O k=o 

With the aid of formula 8.~1 (2) from [3] It .ls easy to show that 
min (n, k) 

-hTLLp’l’ (34 = (_ qne-AX 

and, hence, 
min (n. k) 

lTzo = (- h)%k(“) [ Ck@) = 2 2’( :)(:I:)] (4.25) 

Taking Into account (4.24) and (4.25), we find 

[ $W?? (4]x=o = - (- h)’ 8, (f)‘” bo* i Ak,$%kck(‘) - 
k=o 

+I,* &I, k (:)hkc$) + a3 i ,#) (hb) hkck(r) (4.26) 
k=o k=O 

Substituting the obtained values of the derivatives of m,“(x) for x=0 

into the free edge conditions (4.6), we find 

BlpP(hb)- B1,y%2,(")(hb) 
A,+ = 03 ' 

A** B,($&o) -(hb)- BoyQp (hb) 
-- = Q3--' 

2 B @)B1 :“’ - B, (In)B, 6”’ 
* 9 

where 
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